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Abstract

Linear theory of piezoelectricity is used to solve the problem of electric field concentrations of a pair of parallel
electrodes arrayed in one plane. Hence, the layer tends to deform in a plane mode. Fourier transforms are successfully
applied to reduce electro-elastic boundary value problem to the solutions of integral equations. The integral equations
are solved theoretically and the analytic solutions are carried out. It is found that electric field and stresses concentrate
in the vicinity of the electric edge. The stresses at the edge of electrodes are so high that increases the failure possibility
of materials. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric ceramics is very easy to be manufactured, and its characters are easy to be changed by
modifying its structure or adding other ion. In the materials, stresses and electric charges are generated by
the application of an electric field or mechanical load. Because of these characters, piezoelectric ceramics
have been widely used for actuators and sensors. In these devices, electrodes are arrayed in space. During
operation, stress concentration is resulted from electric field concentration at the tip of electrodes. As a
result, it is important to analyze the electric field and stresses distribution at the edge of electrodes (Uchino,
1998; Rao and Sunar, 1994). Due to the anisotropic electro-elastic properties and the electro-mechanical
coupling in piezoelectric materials, the analysis is complicated. Recently, many researchers have contri-
buted to studying of the behavior of elastic and electric variables in the vicinity of a surface electrode at-
tached to piezoelectric ceramics. For instances, a lot of numerical solutions have been presented by Yang
and Suo (1994), Hao et al. (1996), Hom and Shankar (1996) and Shindo et al. (1997). The electro-elastic
variables behave differently on changing the distance between electrodes. So it is necessary to analyze the
electric field concentration of a pair of electrodes.
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In this paper, attention is focused on the static piezoelectric behavior in the vicinity of a pair of elec-
trodes in one plane. Equations for elastic and electric variables are studied based on the linear theory of
piezoelectricity. Fourier transforms are utilized to reduce electro-elastic boundary value problem to the
solutions in state space. The stresses and electric displacements in the vicinity of the electrodes edge are
analyzed. In addition, the influences of distance between the pair of electrodes on electric field and stress
concentrations at the edge of electrodes are shown graphically.

2. Fundamental governing equations and boundary conditions
2.1. Fundamental theory

If the body force, free electric charge and body electric current are ignored the stress equilibrium
equations yield the form:
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where u, v, w are the displacements, ¢ is electric potential, ¢; are elastic constants, e;; are piezoelectric
constants, g; are the dielectric constants, D,, D, and D, stand for electric displacement components.

2.2. Boundary conditions and assumptions

Using Cartesian coordinates, a piezoelectric ceramics with a pair of parallel electrodes showed in Fig. 1 is
studied. In Fig. 1, the height between the pair of electrodes is 2/, and the length of the electrode is 2a.

We can consider the problem for plane strain. The displacements and electric potential become
u = u(x,z), v = constant, w = w(x, z), ¢ = ¢(x,z). The equilibrium equations are simplified to
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Fig. 1. The piezoelectric material with a pair of electrodes.
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Then Gauss equation is in the form of

oD, N oD,
Ox Oz

-0 (6)
The constitutive equations are obtained as
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If using displacements and electric potential as governing variables the governing equations are
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Ignoring the rigidity of electrodes, the boundary conditions are written as
o(x,xh) = % (x| <a) (10)
D.(x,£h) =0 (x| > a) (11)

o,(x,£h) =0 (—o00 <x < +00) (12)
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To(x,£h) =0 (—00 <x < +00) (13)

o:(x,2) =0 (x| = o0) (14)

3. Solution procedure

It should be noted that the coordinates are symmetrical. We only consider the part of 0 < x < co. By
using Fourier transforms, the displacements and electric potential can be expressed as

u(p,z) = \/%/000 u(x, z) sin (px) dx
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The Fourier reverse transforms are
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Using the above notations, the governing equations are transformed to
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The equation can be written in state space as
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where,
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ki = ci1/caa, ky = (c13 + caa)/Caa, ky = (e31 + eis)/ca
Ii = [ess(ci3 + cas) + ezi(ers + e31)]/(castss + ezess)

Iy = (caaess + ersesr)/(casess + esress)
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The eigenvalue equation is
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Eq. (21) can be written as the following expression
S+ L+ Lp* 2t + Ip® =0
in which,
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The solutions of Eq. (17) can be given by solving the eigenvalues of Eq. (22)
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in which, 4;(p) is calculated from Eq. (22). Substituting Eq. (24) into boundary conditions Eqs. (12) and

(13) yields

Z(Claij + c33Bjl; + enCid;) = 0
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Then, 4; and B; can be expressed by C;
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Eq. (28) is identical to the following Eq. (30)
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in which, g(¢) is the function to be determined and Jy(pt) is zero-order Bessel function. Boundary condition
(10) can be expressed as
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Upon the substitution of Eq. (30) and then integrating by part, Eq. (31) becomes
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Further, applying inverse Abel transformation of the first kind to both sides of Eq. (33), it yields
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in which the kernel function F(¢,u) is given by
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The study of the present paper is limited to the case where the ratio of a/h is small. By using the ex-
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4. Discussion of results

To evaluate the influence of distance between the electrodes, numerical calculations are carried out, the
elastic constant ¢;; is 16.6 x 10'° Nm=2, ¢, is 7.7 x 10" Nm~2, ¢;3 is 7.8 x 10!1® Nm~2, ¢33 is 16.2 x 10'°

¢/h) and w(x,z)/(¢/h) for a/h = 1/10. It can be seen that

(

/

)

Cm™2, the dielectric constant k;; is 1.12 x 107* CV~-'m™" and k33 is 1.26 x 107* CV-'m~! (Nye, 1976).

Nm™2, ¢y is 4.3 x 10! Nm~2, the piezoelectric constant e3; is —4.4 Cm™2, ¢33 is 19.6 Cm™2, ej5 is 11.6
Figs. 2 and 3 show the distribution of u(x,z
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Fig. 2. Distribution of displacement u.

MR
NN
R
SO O
U
R
OO
>
= s%., w%o.

M SSg/uo/suUBUIT

Fig. 3. Distribution of displacement w.
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displacements near the electrode decrease acutely when z/4 decreases. The displacements of u(x,z)/(¢/h)
and w(x,z)/(¢/h) change abruptly at the tip of the electrodes and change lentamente in middle of the
of ¢(x,z)/(¢p/h) is shown in Fig. 4 for a/h = 0.1. The similar results can be

electrodes. The distribution
given from the Fig. 4.

Normal Stress c,/(¢/h)

Normal Stress o /(¢/h)

Fig. 4. Distribution of electric potential ¢(x,z)/(®/h).
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Fig. 5. Distribution of normal stress o,/(®/h) with x/h.
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Fig. 6. Distribution of shear stress t,./(®/h) with x/h.

The distribution of stresses o, /(®/h) and 7,./(®/h) are shown in Figs. 5 and 6. It can be found that the
normal stress a,/(®/h) changes abruptly at the tip of the electrodes (e.g. x/h = 0.1, a/h = 0.1). Then its
absolute value decreases gradually while x/4 increases. It is found from Fig. 6b that the shear stress
7../(®/h) has a jump at the place where x/a is near to 1/2.

The distribution of dimensionless electric displacement D, /(¢ /h) and D, /(¢ /h) are shown in Figs. 7 and
8. There is point of inflection at the tip of electrode (e.g. x/h = 0.1, a/h = 0.1). This leads to electric dis-
placement a sudden change of the edge of electrodes.

5. Conclusions

The distribution of the electric potential and displacement near the edge of electrodes are analyzed
theoretically. The voltage and displacement change abruptly near the tip of the electrodes. The values of
stresses change when distance between electrodes or distance between electrode and base changes. The
electric field concentrates in the neighborhood of the electric edge. The values of stresses in vicinity of
electrodes are so high as to give rise to the failure of materials.
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Fig. 7. Distribution of dimensionless electric displacement D, versus x/h.
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